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Abstract. The general Z, and Z, models on the simple quadratic lattice, and the pair triplet 
lsing model on the triangular lattice are employed to illustrate an extension of the finite 
size scaling technique which obtains the qualitative structure of the phase equilibrium 
surface in terms of multiple phase coexistence. 

1. Introduction 

In an earlier paper Wood and Osbaldestin (1983) argued that the computational method 
of finite size scaling and phenomenological renormalisation in the treatment of lattice 
models exhibiting phase transitions can be extended to obtain a breakdown of the 
phase diagram which identifies regions on the coexistence surface Z where multiple 
phase coexistence occurs. In such applications of finite size scaling theory formal 
expressions for generalised correlation lengths of two semi-infinite lattice systems are 
compared as a renormalisation under a simple rescaling factor. In this a hierarchy of 
approximants is created in the form of implicit functions for 1 (Wood and Osbaldestin 
1982, Osbaldestin and Wood 1982) and its internal structure in terms of multiple phase 
coexistence. 

A short review of phenomenological renormalisation has been given by Nightingale 
(1982, see also Burkhardt and van Leeuwen 1982) and a comprehensive review of 
finite size scaling theory has recently been given by Barber (1983). Detailed examples 
of such calculations can be found in papers by Nightingale (1976, 1977), Sneddon 
(1978), Nightingale and Blote (1980), Blote er a1 (1981), Sneddon and Stinchcombe 
(1979), Hamer and Barber (1980), Roomany et a1 (1980), Wood and Goldfinch (1980), 
Blote and Nightingale (1982), Goldfinch and Wood (1982), Kinzel and Schick (1982), 
Turban and Debierre (1984), and Beale (1984). A critical analysis of the factors relating 
to the convergence of the approximations obtained in phenomenological renormalisa- 
tion has recently been given by Privman and Fisher (1983). 

The present work is in real lattice space in two dimensions; the notation is that 
introduced by Wood and Osbaldestin (1983) where the implicit functions 4 J K )  = 0 
define a sequence of approximants on n which will approximate regions in interaction 
space K where k-fold phase coexistence is possible. In introducing this variant of 
phenomenological renormalisation we used only the scalar Potts models where some 
features of Z are known exactly (Wu 1982). The purpose of the paper is to present 
further applications of the method in obtaining the qualitative structure of the phase 
diagram under more challenging conditions. 

As examples of very general models we have selected the most general form of the 
Z, and 2, models in zero field, where the Hamiltonian is defined purely in terms of 
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Z, and Z5 symmetry. Here the objective is to obtain the phase structure of any specific 
realisations of such models. Z, symmetry is of special interest because of its possible 
similarity to the O(2) models which are thought to have a soft Kosterlitz-Thouless 
(KT) phase within (Kosterlitz and Thouless 1973). It is known that a KT phase exists 
in Z, models when n a 5  (Cardy 1980). We have also examined the Zs five-state 
vector Potts model in an ordering field to see whether the Z surface in the field- 
temperature plane gives any indication that a KT phase exists in zero field. As an 
interesting example of an Ising type system with competing interactions we have applied 
the technique to models on a triangular lattice where both three spin triplet terms and 
the usual pair interactions are present; both ferromagnetic and antiferromagnetic cases 
are considered. The results and discussion of all these calculations are described in 
9 9  2, 3 and 4, which are devoted to Z4, Z,, and triplet spin models respectively. 

2. 2, models 

In lattice models with Z, symmetry the configuration space {e,} of the lattice sites 
i = 1,2,  . . . , N is mapped out by the angular variables 8, which can take the p discrete 
values 0, = 2.rrk/p, k = 0, 1,  . . . , p - 1 .  A model with Z, symmetry on nearest-neighbour 
interactions has a Hamiltonian in the general form 

R=X V(@,-@,), (1) 
11 

where V ( 4 )  is the potential function between nearest-neighbour sites (i, j) and is 
symmetric. The partition function can be written in terms of the [p/2] variables 

w,=exp--P[V(2m/p)-  v ( O ) ] ~ l ,  r = 1 , 2  , . . . ,  [p/2]. (2) 

Thus the ground state is p-fold degenerate and ‘ferromagnetic’ with all the 8, equal 
to one of the possible angles. The partition function for the Z4 model takes the form 

Z ( w , ,  w 2 )  = w y 2  w;1w;2, wo = exp(-PV(O)) (3 )  
{ @ , I  

where q is the nearest-neighbour coordination and n ,  and n, are the numbers of 
nearest-neighbour pairs with relative angular orientations of n-/2 and T respectively. 
Here the unit square in the w , ,  w2 plane contains the infinite temperature and interaction 
range. The phase equilibrium surface on this square maps out the possible phase 
structure of any specific model with Z, symmetry over the whole temperature range. 

Duality relations and the conjectured outline form of the phase diagrams of Z, 
models on the simple quadratic lattice have been considered by several authors (Cardy 
1980, Wu 1979, Domany et a1 1980, Alcaraz and Koberle 1980, Rujin et a1 1981). 
The Z, model is equivalent to the symmetric Ashkin-Teller (AT) model, and can be 
written in terms of two coupled king models (Fan 1972, Betts 1964). A conjectured 
form of the phase diagram of the AT model was given by Wu and Lin (1974), the form 
of the phase diagram for the Z4 model is shown schematically in figure 1 .  The line 
L’E is invariant under the duality relations of the model, which are 

(4) 

The thermodynamic path of a specific model in which V(.rr /2)  and V(T) are related 
will be a curve connecting L ( T  = 0) and H ( T  = CO).  For example the line LP,H is 
the four state scalar Potts model where V( 0, - e,) = -JSe,e,, and the curve HVL is the 

wT = ( 1  - w z ) / ( l  +2w1 + U Z ) ,  w:: = ( 1  - 2 w ,  + w z ) / (  1 +2w, + w 2 ) .  
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Figure 1. The phase diagram of the Z., model. P,E is an exact critical line and part of the 
self dual line L'E. The sections P,lz and P,lf are conjectured to be lines of Ising-like 
transitions. The phases can be characterised by M ,  and M , .  The points * are those obtained 
by Rujin et al (1981). HVL is the vector Potts model. 

vector Potts model where V( 0, - 0,) = - J  cos( 0, - 0,). The critical line P4E is the only 
part of the phase diagram which is known exactly, it is related by duality to the critical 
line of the eight-vertex model (Baxter 1972, Fan 1972) and the point V is the point 
where the model decouples into two non-interacting k ing  models (Betts 1964). The 
construction of Wu and Lin (1974) conjectures both that the dual transition lines P412 
and  P41T exist, and  that they are lines of Ising-like transitions. 

A characterisation of the three phases shown in figure 1 can be made in terms of 
the other parameters 

Mi = (exp(ie,)), M2 = (exP(2ie/)), ( 5 )  

which effectively measure directional expectations at  a site, but where M2 is the expected 
direction under the operation where each site doubles its angle, hence (rr/2,3rr/2) + 77 

and (0, rr) + 0. The low-temperature ordered phase inside EP4IT is characterised as a 
sheet of four phase coexistence where M ,  # 0 and M ,  # 0 arising from the four ground 
states. When heated up along a direction intersecting P41T the model is expected to 
undergo an k i n g  transition at which MI vanishes, into a phase which has a residual 
Z, symmetry under the operation of M 2 .  This is the phase enclosed by I:P412 in which 
Mi = 0 and M z  # 0, and the extreme point L' has infinitely many ground states. The 
high-temperature disordered phase is the region 12P4EH'H where MI = M2 = 0. The 
only quantitative attempts known to the authors to calculate the positions of transition 
points on figure 1 are those of R u j h  et a1 (1981) who used the Migdal-Kadanoff 
renormalisation group method, their calculations are represented by * on the diagram. 

The contours of the approximants 4 2 , k ( ~ 1 ,  w 2 )  and c $ ~ , ~ ( w , ,  02)  for k = 2, 3 and  4 
are shown in the figure sequence 2, 3, and 4. These approximants are based upon 
calculations with 4 XOC, 3 XCO, and 2 X a  strips, the whole phase structure of the Z, 
model appears with quite amazing clarity. As expected the zero contour of the 
approximants 42.2 and 43,2 represents the whole of the high-temperature phase boun- 
dary EP412 and  is probably very close to the exact curve. The exact transition point 
along the boundary w 2 =  1 is marked 12. The contour map represents a rising valley 
bottom along the scalar Potts line LH and clearly suggests that the zero contour is the 
ridge edge of a plateau which covers the whole square on the low-temperature side of 
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Figure 4. The contours of & 4  for the Z,  model. 

the boundary, thus denoting the region where some form of phase coexistence is 
possible. The contours of the approximants & 2 , 3 ( ~ 1 ,  w 2 )  and &3,3(w1, w 2 )  are shown 
in figure 3 and &2,4(01, w 2 )  in figure 4. These clearly reveal the low-temperature phase 
boundary, and the low-temperature phase itself (by the broad summit) to be a region 
of four-fold phase coexistence. Again the contour along the section P41? is probably 
very close to the exact curve, IT marks the exact critical point on the boundary w ,  = 0. 
These contours suggest the scalar Potts transition point P4 to be the bifurcation point 
of the phase boundary. The zero contours of the approximants with k = 3 ,  or 4 are 
the same along the section P41T, this is superimposed as a broken line onto figure 2 
and the points marked are the numerical estimates of transition points obtained by 
R u j h  et a1 (1981). 

3. 2,models 

The partition function of the 2, model is also in the form of (3), and since the operation 
Bi + 2Bi, i = 1,2,  . . . , N leaves the partition function invariant all properties of the 
model are invariant to an interchange of wl, and w2. Consequently the phase diagram 
will be symmetric about the line w1 = w2. The outline form of the phase diagram has 
been conjectured on the basis of symmetry and generalised duality relations (Wu 1979, 
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K ’  

U1 

Figure 5. The conjectured form of the phase diagram of the Z, model. The scalar Potts 
model transition at P, is the only exactly known point of the diagram. The three phases 
are marked LT ( low temperature), HT (high temperature) and KT phases. AM is the self 
dual line. HVO is the vector Potts model. The bulb shaped region about the dual line is 
a possible form of the KT phase suggested by the present work. 

Domany et a1 1980, Cardy 1980, Rujim et a1 1981) and is summarised in figure 5 .  
The line AM is the self dual line under the relations 

w r  = [ l  +2wl c o s ( 2 ~ / 5 )  +2w2 C O S ( ~ V / ~ ) ] / (  1 + 2 w ,  + 2w2) ( 6 a )  

w :  =[1+2wl c0s(4.rr/5)+2w2 C O s ( 2 . r r / 5 ) ] / ( 1 + 2 w , + 2 0 2 )  ( 6 b )  

where c o s ( 2 ~ / 5 )  = (45  - 1)/4, and c o s ( 4 ~ / 5 )  = - (45 + 1)/4: these relations map the 
lower triangle OMA onto the upper triangle HMA. P5 is the self dual point and is the 
only exactly known part of the phase surface since it is the first-order transition point 
in zero field of the five-state scalar Potts model (Baxter 1973). The majority view is 
that a section of the dual line AM probably forms part of the low-temperature phase 
boundary between the bifurcation points El and E*, marking off a line segment of 
first-order transitions where the ordered and disordered phases can coexist. 

The Z5 model is particularly interesting since it seems likely to be a model where 
a conventional second-order transition between ordered and disordered phases cannot 
occur. The third phase of C is shown schematically in figure 5 bounded by the low- 
and high-temperature (LT and HT) phase boundaries L’E, and K’EI respectively, and 
is the KT massless phase where MI = M2 = 0, and is distinguished by spatial correlations 
which decay algebraically, not exponentially. The existence of three phases for 2, 
models where p 2 5 has been proved by Cardy (1980) who gave a lower bound to the 
extension of this phase: in the case of Z5 this is shown schematically by the shaded 
region on figure 5.  The conjectured boundaries of the KT phase are dual curves along 
which the transitions are of infinite order, and the whole KT phase maps into itself 
under the duality relations ( 6 ) .  

The only attempts known to the authors to obtain numerical estimates of points 
on the phase boundaries in figure 5 are the Migdal-Kadanoff RG calculations of Rujan 
et a1 (1980) who obtained the points marked * as upper bounds to the KT phase 
boundary. To test the qualitative outline form of C shown in figure 5 R u j h  et a1 
carried out calculations near to the edge wI = 1 but found no evidence of a transition. 
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They concluded that the KT phase probably did not exist. Our calculations reveal 
precisely these features along this boundary but point to a different conclusion. 

to converge to the 
high-temperature phase boundary KPSK and the sequence 4n,5 to approximate the 
low-temperature boundary LPsL’. In fact the contours of 4n,s and 4n,4 reveal only 
minor differences and those of 4n,2 and 4,,3 are identical. The contour maps for n = 2, 
and 3 are shown in figures 6 and I. The close packing of contours in 4J2,2 and &,2 

ends abruptly in the neighbourhood of the contour at -0.01, beyond which the hillside 
flattens off very rapidly. A new numerical feature appears in these contours, this is 
the evident instability of the zero contour to small changes in the value of the 
approximant in the neighbourhood of zero. This effect has tightened up a little between 
42,2 and 4 2 . 3  but in both cases is most pronounced in precisely the region where the 
KT phase is thought to be. The feature of a single line segment (Domany et a1 1980) 
ElE2 in figure 5 is clearly supported by these contours; the zeros of 43,4 and 4 3 . 2  are 
indistinguishable up to the points marked E, and E2 on figure 6. The contour maps 
of 42.3 (and 43.3) are identical to those of 42,2 (and 4 3 . 2 )  in figure 6 which suggests that 
the sequence 4n,3 will converge onto the HT-KT phase boundary; this is a very interesting 
feature. The authors had expected that 4n,3, 4n,4 and 4n,5 would all approximate the 
LT-KT phase boundary (compare Z4). 

The KT phase has been given a spin configurational characterisation by Einhorn 
et a1 (1980) in the form of vortex-antivortex pair dissociation. The fact that the zero 
contours of 4 2 . 3  and 43,3 separate off from the LT phase boundary suggests that the 
KT phase has a threefold characterisation. Following Einhorn et a1 (1980) excitations 
in the LT phase are either domains of sites with the same orientation (the boundaries 
of which are known as strings) or vortex pairs which are tightly bound with energies 
proportional to the vortex-antivortex separation. The low-temperature transition is a 
condensation of strings and as such should be represented in the zero contours of 42,5 
and probably 4 2 . 4  characterising the fivefold phase coexistence in the low-temperature 
phase. The condensation of strings and the dissociation of vortex pairs occur at 
different temperatures, hence the appearance of the KT phase, the HT boundary of 
which is characterised by the dissociation of vortex pairs. A typical vortex pair in Z5 
is shown schematically in figure 5 (the angular states are numbered 1 , .  . . , 5 ) .  If we fix 
a characteristic excitation energy of a pair, then there are three configurational types 
possible in Z5, these are the five, four, and three line pairs shown in figure 8. The pairs 
in figure 8(b) and (c )  contain islands with angular separations of 4 ~ / 5  from their 
neighbours. We advance the interpretation that the separation of the 42,3 and 4J3.3 
zero contours onto the HT-KT phase boundary reflects the threefold degeneracy of 
vortex pairs in the 2, model. In the neighbourhood of the edges w 2  = 0 and w 1  = 0 a 
large asymmetry in the potentials V ( 2 ~ / 5 )  and V ( 4 ~ / 5 )  exists, which will progressively 
distort the vortex pairs of four and three lines until on the boundary lines these pairs 
cannot form. In addition the pairs in figure 8(a)  cannot be formed on a square net 
when w 1  or w 2  is zero. It follows from this that the intersection of the HT phase 
boundary and the line w 2  = 0 is a termination point of this threefold characterisation 
of the KT phase which cannot exist along this line. Our conjecture based upon these 
calculations is that the LT, KT, and HT phases all meet in the end point of the dual 
line, and that along w 2 = 0  there is a fivefold coexisting LT phase along OA with a 
transition into a disordered phase at A. There are only slight differences between the 
contours for k = 4 and 5, the former for n = 2, and 3 are shown in figure 7.  The 
boundary depicted in 43.4 has been depressed closer to the lines w1 = 0 and w 2  = 0. 

In the present technique we would expect the approximants 
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Figure 8. The three types of vortex-antivortex pairs which can be formed in the Z ,  model. 

Our intepretation of these contours is that the LT phase boundary will ultimately 
intersect the axes w , ,  and w 2  and that in view of the above the LT and HT phases will 
meet at the end of the dual line; thus our view of the phase diagram is represented 
by the bulb shaped region shown in figure 5 ;  we think it particularly significant that 
no transition of any type is detected on the lines w ,  = 1, and w2 = 0 (see also Rujin er 
a1 1981). 

An alternative view of the KT phase giving some evidence of its existence can be 
obtained by giving a specific Z5 model some form of single site ordering field. We 
have taken the special case of the vector Potts model in a field h with a Hamiltonian 

= - J COS( 6, - 6,) - h C COS 6, J > O .  
I, I 

(7) 

In zero field the model lies along the thermodynamic trajectory w ,  = w $ ~ - * ' ~ ) ' *  and is 
shown in figure 5 .  In the limit h + --CO the model reduces to a simple zero field Ising 
model in which two coexisting phases are phases of preferred alignment along 
Bi = 47r/5 and 6 ~ / 5  with a critical point at 2K, (Ising)/[l -cos(2r /5)]  = 1.275.. . . 
The contours of q52,2(K, h )  are shown in figure 9, and as expected the zero contour 
marks off a region of two phase coexistence inside h < 0, in which the two phases are 
perturbed versions of the phases at h = --CO whose exact critical point is marked at A. 
Here again the location of the contours inside k0.05 are quite sensitive to the values 
of the approximant, however an entirely new feature is the very pronounced lobe-like 
extension centred on the zero field axis (compare the corresponding scalar Potts models, 
Wood and Osbaldestin (1983)). A schematic interpretation ofthe exact phase boundary 
which the zero contour represents is drawn on figure 9 (broken curve), where the 
section BC is the KT phase. 

4. Three-body interactions on the triangular lattice 

Here we consider a generalisation of the Ising model which incorporates three spin 
terms into the Hamiltonian in the form 

where the variables ui are Ising-like with values *l, and the interactions J2 and J3 are 
on nearest-neighbour pairs and nearest-neighbour triangles respectively. The pure 
triplet model (J2 = 0) in zero field has been solved exactly by Baxter and Wu (1973, 
1974), other studies of mixed interactions have used series expansions and real space 
renormalisation techniques (Wood and Griffiths 1974, Griffiths and Wood 1973, Barber 
1976, Imbro and Hemmer 1976). Baxter and Enting (1976) showed that the pure triplet 
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K 

Figure 9. The contours of the vector Potts model in a field h. The large lobe-like extension 
near to the zero field axis denotes the effect of the KT phase. A is the exact critical point 
at h = -a and the broken curve is a schematic representation of the exact phase diagram. 

model is a special case of the symmetric eight-vertex model, and vertex model rep- 
resentations and duality properties of triplet models have been discussed by Wood 
and Pegg (1977). No exact information of the phase equilibrium of the triplet model 
in relation to its ordering field H or the pair field J2 is known. 

The exact solution of the pure triplet model in zero field reveals a single critical 
point at the self dual point K3,?( = p J 3 )  = 0.440 68 . . . where ( U , )  = 0, K 3  S K3,c.  The 
model does not have inversion symmetry, the zero field low-temperature ground state 
is fourfold degenerate; the four ground state configurations are shown in figure 10, 
these characterise the four coexisting phases below the critical point. In a small 
negative field these states split, the three phases characterised by spin reversals on two 
of the three equivalent sublattices (figures 10(b),  (c), and ( d ) )  remain degenerate and 
characterise a region of three phase coexistence which opens up in the negative field 
region. At zero temperature there is a critical field at H = -6J3 beyond which the 
ground state has all spins reversed ( U ,  = - l ) ,  hence we expect h = -6J,  to be the end 
point of a line of critical points inside the negative field region bordering a sheet of 
three phase coexistence. 

All of these features are beautifully revealed in the scaling contours shown in figure 
1 1 .  The approximants in this case must be constructed using 3 n x 00 strips, this preserves 
the ground state symmetries on finite systems. The approximants 43,k( KZ, K , ,  H )  have 
been formed using the transfer matrices of 6 xoo and 3 X O ~  strips. The contours of 
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I 

i c l  !dl 

Figure IO. The four zero temperature ground state configurations of the pure triplet model 
on a triangular lattice. 

+3,2 and 43,3 are practically indistinguishable, and give an amazingly clear resolution 
(in intervals of 0.5) of the region of three phase coexistence (figure l l ( a ) ) .  The zero 
field edge of this region terminates almost exactly at the correct critical point. The 
contours of c $ ~ , ~  in figure 11( b )  represent the fourfold phase coexistence along H = 0 
by a thin hairline loop almost exactly equal to the coexistence line. In figure I l ( b )  
the scale has been enlarged to show the loop. This has cut off the appearance Qf a 
rogue zero contour inside the three phase region (such contours are also seen in figure 
4). It differs from the contours which have so far represented boundaries of phase 
coexistence in that it lies on the ‘hillside’ and does not form an edge to a plateau or 
broad summit. However we have no rationale for labelling this contour or those in 
figure 4 as spurious. 

The contours in figure 11 for the case of a mixed Hamiltonian at the ratio y = J, /  J3 = f 
are shown in figure 12. The Hamiltonian (6) retains the fourfold degenerate ground 
state shown in figure 10 at a value of the field given by H = - J 3 ;  for H > -J3 figure 
lO(a )  is the ground state. In general if y>O it is simple to show that for y < :  the 
ground state is fourfold degenerate at H = -3 yJ3,  and that in the region -6J3( 1 - y )  < 
H < -3yJ3 the ground state is threefold degenerate through the states in figure 10(b), 
(c ) ,  and ( d ) .  The phase structure revealed in the case y = f shows a copy of the pure 
triplet case but of reduced size. The remarkable feature is the preservation of a fourfold 
phase coexistence line at the constant field value H = -35,. It would certainly appear 
that at this value of y the model is equivalent to the pure triplet model but in a critical 
field H = -35, and with a reduced critical temperature. The observation here rather 
suggests that the critical behaviour of the mixed Hamiltonian is likely to remain that 
of the pure triplet model with an effective translational shift to small negative fields, 
which seems to conflict with conclusions reached in renormalisation group studies. 

We have performed numerous calculations in which the nearest-neighbour coupling 
J2  is antiferromagnetic, some of these are shown in figure 13 where the contours 
obtained from c$3.2 and h3 are identical, hence in every case the large plateau humps 
represent regions of three phase coexistence. It is well known that the simple antifer- 
romagnetic Ising model on a triangular lattice has no critical or phase coexistence at 
H = 0 (Domb 1974) and that the ground state is infinitely degenerate. For H # 0 the 
ground states are the three configurations in figures 10( b ) ,  (c )  and ( d )  when H < 0, 
and their spin inversions when H > 0. The critical fields for zero temperature transitions 
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into states of all spins positive or negative are at H = 1652. Figure 13(a) reveals all 
of these features very clearly. The critical line of order-disorder transitions has been 
studied by Kinzel and Schick (1981). A triplet spin field removes the multiple 
degeneracy of the ground state in zero field which is now threefold degenerate. The 
two humps of figure 13(a)  remain in the phase diagram when J3/IJ21<$ and J 3 > O ;  
the area of coexistence lying within a positive field shrinks with increasing J3 and 
vanishes altogether at J3/1J21 = $. These features are illustrated by the contours in figure 
13(b) at J3/1J21 = 1/10; at T = 0 the critical fields are given by H/IJ,I = -6( 1 -J3//J2/), 
and 6(1 +J3/(J21), and the spin inversion transition between the two areas of three 
phase coexistence occurs at H = 65, (J3/(Jzl <+). The phase diagram for J3/IJzl = 3 is 
shown in the contours of figure 13(c),  the spin inversion transition has now vanished, 
phase coexistence originally inside the negative field hump has taken over the whole 
phase equilibrium surface. 
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